Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR.

Identifieur interne : 001949 ( Main/Exploration ); précédent : 001948; suivant : 001950

Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR.

Auteurs : Chi Kwan Tsang [États-Unis] ; Paula G. Bertram ; Wandong Ai ; Ryan Drenan ; X F Steven Zheng

Source :

RBID : pubmed:14609951

Descripteurs français

English descriptors

Abstract

The target of rapamycin (TOR) protein is a conserved regulator of ribosome biogenesis, an important process for cell growth and proliferation. However, how TOR is involved remains poorly understood. In this study, we find that rapamycin and nutrient starvation, conditions inhibiting TOR, lead to significant nucleolar size reduction in both yeast and mammalian cells. In yeast, this morphological change is accompanied by release of RNA polymerase I (Pol I) from the nucleolus and inhibition of ribosomal DNA (rDNA) transcription. We also present evidence that TOR regulates association of Rpd3-Sin3 histone deacetylase (HDAC) with rDNA chromatin, leading to site-specific deacetylation of histone H4. Moreover, histone H4 hypoacetylation mutations cause nucleolar size reduction and Pol I delocalization, while rpd3Delta and histone H4 hyperacetylation mutations block the nucleolar changes as a result of TOR inhibition. Taken together, our results suggest a chromatin-mediated mechanism by which TOR modulates nucleolar structure, RNA Pol I localization and rRNA gene expression in response to nutrient availability.

DOI: 10.1093/emboj/cdg578
PubMed: 14609951
PubMed Central: PMC275436


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR.</title>
<author>
<name sortKey="Tsang, Chi Kwan" sort="Tsang, Chi Kwan" uniqKey="Tsang C" first="Chi Kwan" last="Tsang">Chi Kwan Tsang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
<settlement type="city">Saint-Louis (Missouri)</settlement>
</placeName>
<orgName type="university">École de médecine (Université Washington de Saint-Louis)</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bertram, Paula G" sort="Bertram, Paula G" uniqKey="Bertram P" first="Paula G" last="Bertram">Paula G. Bertram</name>
</author>
<author>
<name sortKey="Ai, Wandong" sort="Ai, Wandong" uniqKey="Ai W" first="Wandong" last="Ai">Wandong Ai</name>
</author>
<author>
<name sortKey="Drenan, Ryan" sort="Drenan, Ryan" uniqKey="Drenan R" first="Ryan" last="Drenan">Ryan Drenan</name>
</author>
<author>
<name sortKey="Zheng, X F Steven" sort="Zheng, X F Steven" uniqKey="Zheng X" first="X F Steven" last="Zheng">X F Steven Zheng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:14609951</idno>
<idno type="pmid">14609951</idno>
<idno type="doi">10.1093/emboj/cdg578</idno>
<idno type="pmc">PMC275436</idno>
<idno type="wicri:Area/Main/Corpus">001908</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001908</idno>
<idno type="wicri:Area/Main/Curation">001908</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001908</idno>
<idno type="wicri:Area/Main/Exploration">001908</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR.</title>
<author>
<name sortKey="Tsang, Chi Kwan" sort="Tsang, Chi Kwan" uniqKey="Tsang C" first="Chi Kwan" last="Tsang">Chi Kwan Tsang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
<settlement type="city">Saint-Louis (Missouri)</settlement>
</placeName>
<orgName type="university">École de médecine (Université Washington de Saint-Louis)</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bertram, Paula G" sort="Bertram, Paula G" uniqKey="Bertram P" first="Paula G" last="Bertram">Paula G. Bertram</name>
</author>
<author>
<name sortKey="Ai, Wandong" sort="Ai, Wandong" uniqKey="Ai W" first="Wandong" last="Ai">Wandong Ai</name>
</author>
<author>
<name sortKey="Drenan, Ryan" sort="Drenan, Ryan" uniqKey="Drenan R" first="Ryan" last="Drenan">Ryan Drenan</name>
</author>
<author>
<name sortKey="Zheng, X F Steven" sort="Zheng, X F Steven" uniqKey="Zheng X" first="X F Steven" last="Zheng">X F Steven Zheng</name>
</author>
</analytic>
<series>
<title level="j">The EMBO journal</title>
<idno type="ISSN">0261-4189</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antifungal Agents (pharmacology)</term>
<term>Cell Nucleolus (drug effects)</term>
<term>Cell Nucleolus (metabolism)</term>
<term>Chromatin (drug effects)</term>
<term>Chromatin (metabolism)</term>
<term>DNA, Ribosomal (MeSH)</term>
<term>In Situ Hybridization, Fluorescence (MeSH)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (metabolism)</term>
<term>RNA Polymerase I (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Yeasts (drug effects)</term>
<term>Yeasts (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ribosomique (MeSH)</term>
<term>Antifongiques (pharmacologie)</term>
<term>Chromatine (effets des médicaments et des substances chimiques)</term>
<term>Chromatine (métabolisme)</term>
<term>Hybridation fluorescente in situ (MeSH)</term>
<term>Levures (effets des médicaments et des substances chimiques)</term>
<term>Levures (métabolisme)</term>
<term>Nucléole (effets des médicaments et des substances chimiques)</term>
<term>Nucléole (métabolisme)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>RNA polymerase I (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Chromatin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chromatin</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>RNA Polymerase I</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Nucleolus</term>
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Chromatine</term>
<term>Levures</term>
<term>Nucléole</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleolus</term>
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chromatine</term>
<term>Levures</term>
<term>Nucléole</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>RNA polymerase I</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antifongiques</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA, Ribosomal</term>
<term>In Situ Hybridization, Fluorescence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN ribosomique</term>
<term>Hybridation fluorescente in situ</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The target of rapamycin (TOR) protein is a conserved regulator of ribosome biogenesis, an important process for cell growth and proliferation. However, how TOR is involved remains poorly understood. In this study, we find that rapamycin and nutrient starvation, conditions inhibiting TOR, lead to significant nucleolar size reduction in both yeast and mammalian cells. In yeast, this morphological change is accompanied by release of RNA polymerase I (Pol I) from the nucleolus and inhibition of ribosomal DNA (rDNA) transcription. We also present evidence that TOR regulates association of Rpd3-Sin3 histone deacetylase (HDAC) with rDNA chromatin, leading to site-specific deacetylation of histone H4. Moreover, histone H4 hypoacetylation mutations cause nucleolar size reduction and Pol I delocalization, while rpd3Delta and histone H4 hyperacetylation mutations block the nucleolar changes as a result of TOR inhibition. Taken together, our results suggest a chromatin-mediated mechanism by which TOR modulates nucleolar structure, RNA Pol I localization and rRNA gene expression in response to nutrient availability.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">14609951</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>01</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0261-4189</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>22</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2003</Year>
<Month>Nov</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>The EMBO journal</Title>
<ISOAbbreviation>EMBO J</ISOAbbreviation>
</Journal>
<ArticleTitle>Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR.</ArticleTitle>
<Pagination>
<MedlinePgn>6045-56</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The target of rapamycin (TOR) protein is a conserved regulator of ribosome biogenesis, an important process for cell growth and proliferation. However, how TOR is involved remains poorly understood. In this study, we find that rapamycin and nutrient starvation, conditions inhibiting TOR, lead to significant nucleolar size reduction in both yeast and mammalian cells. In yeast, this morphological change is accompanied by release of RNA polymerase I (Pol I) from the nucleolus and inhibition of ribosomal DNA (rDNA) transcription. We also present evidence that TOR regulates association of Rpd3-Sin3 histone deacetylase (HDAC) with rDNA chromatin, leading to site-specific deacetylation of histone H4. Moreover, histone H4 hypoacetylation mutations cause nucleolar size reduction and Pol I delocalization, while rpd3Delta and histone H4 hyperacetylation mutations block the nucleolar changes as a result of TOR inhibition. Taken together, our results suggest a chromatin-mediated mechanism by which TOR modulates nucleolar structure, RNA Pol I localization and rRNA gene expression in response to nutrient availability.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tsang</LastName>
<ForeName>Chi Kwan</ForeName>
<Initials>CK</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bertram</LastName>
<ForeName>Paula G</ForeName>
<Initials>PG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ai</LastName>
<ForeName>Wandong</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Drenan</LastName>
<ForeName>Ryan</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>X F Steven</ForeName>
<Initials>XF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01GM62817</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01CA77668</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM062817</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA099004</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01CA99004</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>EMBO J</MedlineTA>
<NlmUniqueID>8208664</NlmUniqueID>
<ISSNLinking>0261-4189</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002843">Chromatin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004275">DNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.6</RegistryNumber>
<NameOfSubstance UI="D012318">RNA Polymerase I</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002466" MajorTopicYN="N">Cell Nucleolus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002843" MajorTopicYN="N">Chromatin</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004275" MajorTopicYN="N">DNA, Ribosomal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017404" MajorTopicYN="N">In Situ Hybridization, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012318" MajorTopicYN="N">RNA Polymerase I</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14609951</ArticleId>
<ArticleId IdType="doi">10.1093/emboj/cdg578</ArticleId>
<ArticleId IdType="pmc">PMC275436</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2002 Sep 2;21(17):4632-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12198165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Feb;22(4):1246-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11809814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Dec 13;111(6):771-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12526804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2003 Mar;3(3):179-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2003 Apr;4(4):276-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Jul 15;17(14):1691-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12865296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Feb 16;247(4944):841-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2106160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 May 25;18(10):3091-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2190191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:602-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 May;125(3):517-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8175878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Immunopharmacol. 1994 Sep;16(9):711-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7528736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Jul 14;82(1):121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7606777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Oct 6;83(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7553860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 6;270(5233):50-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Growth Differ. 1996 Sep;7(9):1199-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8877101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14503-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8962081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 May 2;89(3):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9150136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Jun 2;16(11):3243-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9214640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Aug;17(8):4852-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9234741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Oct;17(10):6175-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9315678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):680-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13458-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9391047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Apr 23;392(6678):831-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9572144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6693-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9618474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Aug;18(8):4463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Sep;18(9):5121-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9710596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Nov 5;8(22):1211-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1999 Feb;9(1):49-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 1999 May;6(5):R129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1999 Jun;11(3):385-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10395554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1999;33:261-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10690410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Sep 16;21(18):4959-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2002 Oct;3(10):988-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Oct 4;111(1):9-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12372295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Sep 17;12(18):R623-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12372268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Dec;10(6):1295-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12504006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2002 Apr;12(2):142-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11893486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 May 31;109(5):545-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2002 Jun;14(3):313-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12067653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2000 May;10(5):189-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10754561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2000 Jun;12(3):372-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Jul 13;10(14):861-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10899009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Oct 16;19(20):5473-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11032814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Oct 13;103(2):253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11057898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Nov 9;408(6809):255-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11089983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 17;275(46):35727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Dec 14-28;10(24):1574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Feb;157(2):545-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11156977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 2;276(9):6463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 30;276(13):9583-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7037-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11416184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Aug;28(4):327-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11455386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 10;293(5532):1074-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11498575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Oct 15;29(20):4114-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11600700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Dec 7;509(2):145-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jan;23(2):629-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509460</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Missouri (État)</li>
</region>
<settlement>
<li>Saint-Louis (Missouri)</li>
</settlement>
<orgName>
<li>École de médecine (Université Washington de Saint-Louis)</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Ai, Wandong" sort="Ai, Wandong" uniqKey="Ai W" first="Wandong" last="Ai">Wandong Ai</name>
<name sortKey="Bertram, Paula G" sort="Bertram, Paula G" uniqKey="Bertram P" first="Paula G" last="Bertram">Paula G. Bertram</name>
<name sortKey="Drenan, Ryan" sort="Drenan, Ryan" uniqKey="Drenan R" first="Ryan" last="Drenan">Ryan Drenan</name>
<name sortKey="Zheng, X F Steven" sort="Zheng, X F Steven" uniqKey="Zheng X" first="X F Steven" last="Zheng">X F Steven Zheng</name>
</noCountry>
<country name="États-Unis">
<region name="Missouri (État)">
<name sortKey="Tsang, Chi Kwan" sort="Tsang, Chi Kwan" uniqKey="Tsang C" first="Chi Kwan" last="Tsang">Chi Kwan Tsang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001949 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001949 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:14609951
   |texte=   Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:14609951" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020